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Human speech recognition 
systems like Siri and Google 
Now can achieve ~95% 
accuracy using neural 
network-based recognition. 

https://www.androidheadlines.com/2017/06/google-
improves-voice-recognition-hits-95-accuracy.html
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Hypothesis: Neural network methods from 
Automatic Speech Recognition (ASR) can be 
adapted to classify dolphin whistles.

4/12



Machine learning as function approximation

𝑓 ∶ 𝑖𝑛𝑝𝑢𝑡 → 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑓 = 𝑑𝑜𝑔

𝑓 = 𝑐𝑎𝑡

How do we come up with 𝒇(·)?

1. Task-specific features, learn 𝑓 ·
(Previous work)

2. Standard features, learn 𝑓 ·
(SVMs, Feed-forward NN, etc.)

3. Learn features and 𝑓(·) directly
(Convolutional neural methods)
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MFCC Features*:

A 26-dimensional vector 
that represents the power 
in each frequency band

Filter bank designed to 
emulate human hearing 
physiology

*Mermelstein, Paul. (1976) [6]

Full Spectrogram data:

Calculated using a sliding 
window FFT

1024-pt FFT on sliding 
Hanning window with 
50% overlap.

Contains “all” data 
available in signal

Task-specific Features:

Based on 10 features*:

1) Start frequency
2) End frequency
3) Minimum frequency
4) Maximum frequency 

…

*Oswald, Julie N., et al. (2007) [3]
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Convolutional neural network (CNN)
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Machine learning dataset

Data generously provided by Tammy L. Silva ad T. Aran Mooney [1]

Day 1 Day 2

8,632 total vocalizations

339 “clear” whistles 
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339 total 
whistle clips

Classified 
into 11 

categories
20% testing

80% training 
clips

Random 
shuffle

x 10
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Machine learning dataset



17.2% in 11-way classification*  Linear discriminant analysis

20.6%*Decision trees

59.7%Linear discriminant analysis

61.5%Decision trees

82.8%SVM polynomial kernel

83.7%Feed forward NN

76.8%Logistic regression

85.9% average accuracyConvolutional NN

*vs 33.5 and 33.6 reported for 8-way classification in Oswald, Julie N., et al. (2007)

MFCC

Spectrogram

Task specific

CNNs attain maximum classification accuracy 
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CNN performance is label dependent

High classification 
accuracy in classes 

with many examples

Low accuracy for classes 
with few examples

Performance should continue to improve with additional training examples
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Code: https://gitlab.com/warplab/dolphin-lang

Website: https://warp.whoi.edu
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Feed-forward neural network
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